
1

Overview of SOEP 
Michael Wetter and Thierry S. Nouidui  
Simulation Research Group 

June 19, 2015



SOEP overview

The purpose is to 

1. understand motivation for SOEP 

2. understand how SOEP is structured, and what its key modules are  
(more details will be in subsequent presentations) 

3. how SOEP fits into larger eco-system of tools 

4. discuss SOEP functionalities 

5. discuss requirements
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Motivation
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Motivation

For re-modularization & encapsulation


•More flexible, testable code 

•Easier, more standardized integration with other simulation tools 

•Leveraging of simulation advances elsewhere, e.g., parallel solvers, system decomposition, … 

•Scalability to large models 

•Redeployment of models from/to other sources/use cases 
• From product specifications 
• To control systems 

For re-implementation


•More flexible HVAC & control 

•Modeling of faults & non-idealized control 

•Modeling of hybrid systems, each containing their own feedback control
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Problem: 
Even today’s buildings don’t operate as intended. 
…how do we fix them and transition to grid-aware buildings?

clock-based & PID

1980 2030

control-related problems (Ardehali, Smith 2002)

control complexity

1. No means for performance quantification that caries from design to operation. 

MPC for large buildings

adaptive, grid aware, MPC for 
buildings and communities

2. Building controls are broken, yet their 
complexity increases for ZEB. 3. Controls becomes more complex, yet there is no 

process that support this increased complexity.



User behavior becomes increasingly important and fixed time 
step simulation can cause large errors
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30% difference in cooling energy for this 
day if 30 min vs. 1 min time steps are 
used. 

Source: 
H. Burak Gunay, William O'Brien, Ian 
Beausoleil-Morrison, Rhys Goldstein, 
Simon Breslav & Azam Khan, Coupling 
stochastic occupant models to building 
performance simulation using the discrete 
event system specification formalism; 
JBPS 7(6), 2014 

Journal of Building Performance Simulation 465

Figure 7. Operative temperature, cooling load, and adaptive states calculated with identical occupant and energy models that were
simulated at time-step (a) 1 min, (b) 5 min, (c) 10 min, (d) 30 min, (e) 60 min, and (f) a reference model without an occupant model.

inconsistent results once simulated using varying fixed time
steps. A reference model was also simulated by removing
the occupant model and defining a fixed setpoint with the

identical HVAC system. Figure 7(f) shows cooling load
and temperature response in absence of the occupant model
from time steps of 1, 5, 15, 30, 60 min. Results indicate
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http://www.tandfonline.com/doi/full/10.1080/19401493.2013.866695


SOEP structure and key 
modules
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SOEP Structure
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SOEP Structure
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decrease run-
time

Granularity 
depends on E+ 
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SOEP Structure
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FMUs for model-exchange, 
exposing differential equation 
(e.g., dT/dt = f(T, t)). 
 
Envelope implemented by 
refactoring C++ code of E+

Ptolemy II provides 
master algorithm 
(discrete event 
simulation with QSS 
integration) using 
CyPhySim 
configuration

Modelica Buildings library
Could be from 
Buildings.Airflow 
library

Prototyped with 
Tridium Niagara

OpenStudio front-end for 
model instantiation and 
connection

Maybe 
ASHRAE 
205

http://simulationresearch.lbl.gov/wetter/download/2015-BrooksEtAl_CyPhySimDemo.pdf
http://simulationresearch.lbl.gov/modelica/
http://simulationresearch.lbl.gov/wetter/download/Wetter-airflow-2006.pdf
http://simulationresearch.lbl.gov/wetter/download/2014-IBPSA-USA-NouiduiWetter.pdf


Room air changes about 5 to 10 times faster than surface 
temperatures
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SOEP HVAC will interface to ordinary differential equation of 
room air
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Envelope evolves using discrete time steps while room air 
evolves using variable time steps (using discrete event 
simulation)
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Room air 
(Brent’s 
refactoring)

Wall  
surfaces

From 
Buildings 
library



FMI container for HVAC, illustrated for an ideal heater
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How does SOEP fit into 
ecosystem of other tools and 

activities?
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Figure 2: Architecture of SOEP and its interaction with model libraries and building automation systems.

reinitialization of state variables. This is required
to solve optimal control problems, model lineariza-
tions and to implement certain parallel time integra-
tion algorithms.

5. All FMUs must be deterministic3 and the master al-
gorithm must guarantee a deterministic execution
of any composition of deterministic FMUs.4 This
ensures that phenomena observed in a simulation
are a result of the model structure and parameters,
and not of arbitrary choices in the evaluation order
of seemingly independent modules.

Additions to Ptolemy II
We added the following functionality to Ptolemy II for
the SOEP prototype.

FMI import

We added FMI import capabilities in Ptolemy II. Mod-
els can be imported as FMUs for co-simulation or
model-exchange. As FMUs for co-simulation provide
their own time integration algorithm, this allows use
of time integration methods such as the Conduction
Transfer Functions that are currently used in Ener-
gyPlus. FMUs for model-exchange do not contain a
time integration algorithm. They can be imported for
integration using either QSS methods or other ODE
integrators that are provided through the continuous
time domain of Ptolemy II. FMUs are encapsulated as
Ptolemy II actors and can therefore be combined with
other actors provided by Ptolemy II.

3 A deterministic FMU is an FMU where the output values and
states are uniquely defined given initial conditions, input values, and
communication points.

4 A deterministic composition of deterministic FMUs is one
where for a valid sequence of communication points, given initial
conditions and inputs from outside the composition, the values of
outputs of the deterministic FMUs are uniquely defined. See Lee
and Zheng (2005) for a rigorous definition of determinism.

QSS Solver

The QSS solver is a standalone package which can
be used to integrate the state derivatives of a sys-
tem of initial-value ODEs. It contains the explicit
QSS methods QSS1, QSS2 and QSS3, as well as the
linearly-implicit methods LIQSS1 and LIQSS2 (Kof-
man, 2003; Migoni et al., 2013).

QSS Director

A new QSSDirector extends Ptolemy II’s discrete-
event model of computation to include the QSS solver.
This director has additional fields for specifying the
type of QSS solver and its quantum, which are used
by actors that perform QSS integration.

FMU QSS actor

The new FMU QSS actor is used to import FMUs
2.0 for model-exchange. It unzips the FMU, parses
the model description file, extracts the state deriva-
tives which need to be integrated, creates input and
outputs ports, integrates the state derivatives using a
QSS solver, requests a time event for the next update
of the state variables, and sends the state variables to
the output ports.

Token that contains value and derivatives

FMU QSS actors communicate via a new SmoothTo-
ken data type which contains the value and optionally
the derivatives of a discrete time signal. The deriva-
tives are used by second and third order QSS methods.
They are also used to align the values of tokens that
are produced at different times. For example, adding
the tokens (x1, ẋ1) = (0, 2) produced at t = 0 and
x2 = 0.2 produced at t = 1 yields at t = 1 a token
with value and derivative (2.2, 2).

Redesign EnergyPlus to allow rapid virtual prototyping, control 
design and model deployment for operation
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Control models run directly 
on physical controllers 

(e.g., Tridium)

HVAC & control models from 
open source, manufacturer 
libraries and ASHRAE 205
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Share development of component library development (now 
through Annex 60)

FMU FMU

Modelica C++

simulation

operation

communication layer

hardware databases

FMU vendor-specific algorithms

op
er

at
io

n
de

sig
n

API

web service

O(n)

IDA/ICE (EQUA SE)

Spawn of EnergyPlus (DOE)

OpenModelica (Linkoeping), 
JModelica (Lund)

Dymola (Dassault), MapleSim, 
Wolfram



Shared Modelica HVAC library development through IEA EBC 
Annex 60

Goal of Annex 60, activity 1.1:  
Develop and distribute a well documented, vetted and validated open-source Modelica library 
that serves as the core of future building simulation programs.
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Functionality
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Generating HVAC & building model

1. OpenStudio will generate a list of HVAC components and their connectivity, and write it to a 
text file. 

2. OpenStudio will invoke the JModelica compiler that generates the FMU. 

3. OpenStudio will generate a list of FMUs (including the one just generated) with their 
parameter values and their input/output connections and write xml code for Ptolemy II. 

4. OpenStudio will invoke Ptolemy II FMU generation [to be discussed on Friday], and invoke 
EnergyPlus.
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Further details and syntax in Chapter 7 of “Master Algorithm for the Spawn of EnergyPlus  
(Working Report)“ 



Algebraic Loops

Algebraic loops will be solved by JModelica. 

No legacy E+ code should be inside the algebraic loop (as E+ is not differentiable).
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Need at least one non-direct feedthrough in loop
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Legacy E+ code

y2(t2) = u(t1)

y(t1) = u(t1)

y2(t2) = y2(t1) +

Z t2

t1

f(u(t1), s) ds

FMU

y2(t2) = u(t1)

y(t1) = u(t1)

y2(t2) = y2(t1) +

Z t2

t1

f(u(t1), s) ds

Legacy E+ code
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Autosizing

Current rule-based auto-sizing is not likely to work. 

Sizing will require an iterative search. 

+ Will include thermal mass effects in equipment sizing. 

+ Will include control input 
   (e.g., how to size a chiller if it needs to shed load during the hottest days) 

- Will require multiple iterations for design day calculation.
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Regression tests

Regression tests will be at three levels: 

1. Modelica library unit tests 

2. Ptolemy II unit tests 

3. EnergyPlus unit tests
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Reports for HVAC systems

The HVAC system is a discrete event 
simulation and hence outputs are only 
generated sporadically. 

Using a time sample is inefficient 
(overhead of sampling and large files). 

We recommend to store the value and 
— if available — derivatives to allow 
reconstruction of a continuous time 
signal. 

The proposed format is on the left
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Further details in Chapter 7 of “Master Algorithm for the Spawn of EnergyPlus  
(Working Report)“ 

Chapter 7. Application Programming Interface

Figure 7.4: Ptolemy II model with the connected FMUs and an output file writer.

This will create the output file output.txt that contains the value of y whenever y is updated.

We may want to create a new actor that writes time, value and derivatives of the SmoothToken, and up-
date the program ReadVarsESO so it can parse this file. We recall that QSS methods produce values
at non-equidistant time steps. In some cases, such as a chiller that is switched off during winter, there
may be no output values for months. We therefore suggest a new output format, that is then converted by
ReadVarsESO to the time grid requested by the tool that visualizes the results. Our suggested output
format is as follows:

1 Header
2 referenceValue variableName units
3 ...
4 Values
5 refererenceValue time y dy_dt d2y_dt2 ...
6 ...

Line 1 and 4 indicate start of the header and values section. The dots (...) indicate that more values could
be provided. Line 2 consists of a unique reference_value, which is an unsigned integer, a variable name that
consists of the FMU instance name and the name of the reported output signal, separated by a period, such
as gain.y, and optional the units. There will be as many entries for line 2 as there are output variables.
Line 5 shows a reported variable, indicated by its referenceValue, time stamp as a double, value, and
optional any derivatives that can be reported, starting with the first time derivative.

Note that because Ptolemy II uses superdense time, there can be multiple entries for the same variable and
time. These entries will be ordered in increasing superdense time.

7.2.5 Executing a model

Suppose the model is stored in a MoML file called model.xml. To execute this model without invoking a
graphical user interface, type

${PTII}/bin/ptexecute model.xml

where ${PTII} points to the installation directory of Ptolemy II. To run the model with a graphical user
interface, replace ptexecute with cyphysim. This will start the subset of Ptolemy II described in [4]
that suffices for SOEP. Alternatively, use vergil to get the full Ptolemy II functionality.

30

Header
referenceValue variableName units
...
Values
referenceValue time y dy_dt d2y_dt2 ...
...



Requirements
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Requirements for master algorithm to build system model

List of instances with their parameter values 

Connection list for output to input mapping 
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m1(p1=10, p2=2,  
   constantGain(Kp=1)),
m2(p1=1, n=20),
m3

m1.u1 = m2.y1
m2.u1 = m2.y1
m2.u2 = m1.y1
m3.u1 = m1.y1
m3.u2 = m2.y1



High level requirements for computing modules (1/2)

All models need to be input/output blocks. 
Optionally, they can have states. 

Solver needs to be able to 
• Set inputs u and states x of the module. 
• Get outputs y of the module. 

Model exchange (preferred): 
• Get time derivative dx/dt of the module. 

Co-simulation (for E+ core): 
• ask to advance time as far as the module can for the given input values u(tk). 
• ask the module how far it could advance time (say to tk+h). 
• tell the module to either 

- accept states x(tk+h) or 
- redo the last step with u(tk) and u(tk + h’) for some h’<h, and accept x(tk + h’).
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High level requirements for computing modules (2/2)

Fluid flow models must have the semantics 
of the stream connector. This need is 
orthogonal to our implementation, but 
needed for robustness if airflow networks 
are coupled with feedback control and 
thermal models.  
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For QSS efficiency, provide what outputs and state derivatives directly depend on inputs. 

Incidence matrices 
• what output depends directly on what input 
• what state derivative depends on what input and state 
• scaling for all variables (e.g., 100,000 Pascals vs. 0.01 kg/s flow rate) 

For computational efficiency, like to only evaluate equations whose right-hand side changed.

https://www.modelica.org/events/modelica2009/Proceedings/memorystick/pages/papers/0078/0078.pdf


Transition of EnergyPlus engine

Stage 1: 

Convert discrete time simulators of thermal zones to a continuous time simulator (from co-simulation to model 
exchange). This continuous time model is then coupled to QSS.  

Stage 2: 

Link E+ envelope to QSS based models for HVAC, control and multi zone airflow. 

Expose E+ envelope so that it satisfies module requirements, i.e., an input/output block, optional with memory. 

From OpenStudio, generate model description file for coupling.  

Refactor E+ envelope outputs that have direct feedthrough (e.g., that depend algebraically on the input) to be 
differentiable whenever they may become part of an algebraic loop — or alternatively, ensure no such direct 
feedthrough exists. 

Stage 3: 

Break core up into individual thermal zones, each being an input/output block. Otherwise, there will be a 
substantial performance loss as the sparsity of QSS is not exploited.
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Questions and discussions

1. SOEP structure 

2. larger eco-system of tools 

3. functionalities 

4. requirements
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